11 Branching, Merging
and Re-common

SpectrumSCM provides a very simple but extremely powerful way to make and manage branching
decisions. Branching in the SpectrumSCM system is handled very differently from most other CM
systems, providing many more options in how branching is handled. SpectrumSCM supports
numerous branching patterns, allowing simple and effective management of activities, source or
project artifacts during the various scenarios that could occur in any project’s life cycle.

In this chapter you will learn how to manage branching in SpectrumSCM, how to merge two
different versions of files, how to recommon two different versions of files, and how to use the
merge editor to merge and recommon files across branches.

11.1 Branching

The concept of branching in an SCM system can be one of the hardest concepts for users of the
system to understand. Simply put, branching is a deviation from a main line of file changes.
Branching is often used to aid in parallel development and for creating new project feature sets or
file content in support of some special needs.

In the SpectrumSCM system, a branch is known as a generic. A generic is a special form of
branching that is highly visible to the user and is not limited to single file branching. That is,
multiple files may join the same generic “branch” in order to form a specialization of a product or
project.

A generic then, is a single branch structure that can accept one or more files off of the main line
development stream or another generic. Each generic contains the file changes necessary to
customize the product for different platforms. Creating an editor for each OS platform then is as
simple as creating a release, or multiple releases, on each generic.

Generics can be thought of as containers for custom work and pointers back to common
components. Except for the customizations needed in particular files, all files in a generic share the
same physical disk space and physical instances of files with the main line or previous generic upon
which it is based. Files that need to be different for the generic are uncommoned. If a file has been
uncommoned among generics, it can be recommoned (made the same).

Uncommoning a file is creating two physical disk images of a single file thus creating divergent
images of the same file. Recommoning is the act of bringing the divergent files back together into
the same physical disk image.

111

Chapter 11 Branching, Merging and Re-common

As an example, consider a part of the development team being charged with developing advanced
features for the editor, in parallel with the current work. The new work could be done in a separate
generic on uncommon files. Once the work has been completed and tested, the new features for the
editor can be rolled up into (recommoned back) with the main development code stream.

As an example, if a project team has developed and released version 1.0 of a system and they are
currently developing generic 2.0, all modules that are changed (modules 1, 4 and 5) or added
(modules 11, 12 and 13) during the 2.0 development effort will be “uncommon” - changed only for
generic 2.0.

1v2 42 5v2 11 12 13
m—O—O—Q—O—O
1 2 3 4 5 6 7 8 9 10

However, if during the development of generic 2.0, a problem is discovered in Release 1.0, the fix
for the problem might be made common to both generics. In this example, the problem is in file 8.
A CR is created, the code is edited, the problem fixed and the fix is made common to both generic
1.0 and generic 2.0. If the fix needs to be distributed, Release 1.1 can be created, containing the
contents of release 1.0 and the fixed file 8. Development of Generic 2.0 can proceed, knowing that
the fix will be carried forward.

1v2 42 5v2 §v2 11 12 13
m—@@z—%
1 2 3 4 5 6 7 8 9 10

As another example, there are times when multiple generics are developed in parallel (for example,
to maintain 2 similar source bases for 2 different customers). The Generic Engineer must decide
who is going to make the branching decisions — who will determine which of the modules will be
common or uncommon with other generics.

11-2

Chapter 11 Branching, Merging and Re-common

When a new release of the system is being developed, the changes and additions are based on the
previous generic or release as defined on the Add Generic Screen.

[SpectrumSCM - Add Generic = |[B][X] | B Modify Generic M=
File Action Help File Action Help
Project: Jaguar Project: Jaguar
Genatic Mame: |Gen_2.[l | Generic Name: [Gen_2.0
Description: Description:
Branch for 2.0 development Branch for 2.0 development
Base:
By Genetic. By Belease
e @ LockMode: | &)
frandom_1.0 ™ i
e e Check out preference:) Comman @ Lncammon
|5dd GEneric' | Cancel | | Modify | | cancel |

(See chapter 6 for details on creating a new generic)

Changes and additions are typically made uncommon to the previous release. Notice that the
default checkout mode (checkout preference) is set on the Modify Generic Screen. If the generic is
locked, all changes made on related generics will uncommon the associated files on this generic. If
the generic is unlocked, the developer can choose to make a specific change uncommon or
common. The Generic Engineer can lock a particular generic to prevent inadvertent changes to
other generics or to enforce process control issues. The generic can be unlocked at a later stage, if a
need arises to make a common change.

In overview, checking out "uncommon" will mean that any file changes will be isolated to that
specific generic. If a checkout is performed "common" then the file changes will be made against
ALL the generics that that file is currently in common with.

* Common: Versioned files that are physically the same across generics

* Uncommon: The act of physically separating versioned files from multiple generics

Checking out "common" is a powerful feature since it can be used to apply a single "fix" to multiple
generics in one edit, however the developer would have to be careful of side-effects.

The ability to create generics solves the basic file branching problems. A generic is, in essence, one
large branch. Files may be added to the branch or remain common with the other files in a previous
or concurrent generic. By creating a separate generic to represent a unit of work it becomes much
easier to keep track of all the changes necessary to create a new product release. Consider the
example of developing an operating system. The initial generic might be developed to create an OS

11-3

Chapter 11 Branching, Merging and Re-common

for the Intel platform. By creating a new generic where all the files are initially common between the
original and new generic, we can easily break the commonality between generics for specific files in
order to create an OS for the Sparc platform. Generics allow us to more easily organize, manage
and track our source files for the purpose of creating releases and managing current and future
work.

11.2 Creating a Branch (Generic)
(See chapter 6 for details on creating a new generic)
1. Determine the generic or the release upon which the new generic will be based. When a new
release of the system is being developed, the changes and additions are based on the generic
or release selected on the Add Generic Screen.

File Action Help

Project: Jaguar

Generic Hame; |Gen_2.lil

Description:

Branch for 2.0 development

Base:
By Genetic. By Release

(& L]

random 1.0

|ﬁdd GEnericl | Cancel |

2. Create the new generic by selecting the Administration/Create Genetic menu option.
Select the radio button, By Generic or By Release, based on step 1 above and click on the
Add Generic button.

3. Select the Administration /Modify Generic menu option. This will take you to the
Modify Generic Screen.

11-4

Chapter 11 Branching, Merging and Re-common

1 podify Generic | f’;]lﬁlle

File Action Help

Project: Jaguar

Genetic Marme: |Gen_2.lil

Ciescription:

Branch for 2.0 development

Lock Mode: %

Check out preference: CJ Common @ Lincarmmon

| moay | | cancel |

4. Determine whether you want to leave individual common/uncommon edit decisions to the
relevant developer or mandate by clicking on the lock icon on this screen. The default
mode (Unlocked) leaves the choice with the developer since they would best know the
source issues.

5. The new branch is now created. Be aware that creating a new generic will lock all releases
on the predecessor generics.

To start editing files under this branch, create the CR (s) under this generic by selecting on the
Generic in the Project Tree window and clicking on the Change Request / Create menu option
or by assigning existing CRs for work under this generic. Note that CRs that have already been
worked under one generic cannot be reassigned to another generic.

11.3 Merge and recommon

Merging allows two branches to synchronize the contents of the files and still retain the separate
development paths. Merging in SpectrumSCM is the act of copying the changes made in one
version of a file into another version of the file using the SpectrumSCM Merge Editors. All changes
need not be made identical in both files.

For Example, Team 1 may have made fixes to a file while Team 2 was making different changes to
the same file as part of the mainline development. The changes made by Team 1 need to be
incorporated (merged) into Team 2's version of the file.

11-5

Chapter 11 Branching, Merging and Re-common

Using the SpectrumSCM Merge Editor for Merge and Recommon
The Split Screen Editor is used for the Merge and Recommon functions. For these functions,
modules must be checked out for Merge or Recommon.

In both the Merge and the Recommon processes, the files selected will be put in the split screen
Merge Editor to allow the changes between the two versions to be identified and reconciled. This
will produce a single version of the file that is then made common to the two generics in the case of
a Recommon or reconciled and kept separate in the case of a Merge.

NOTE: When doing a recommon, the contents of both files in the editor must match when the
check-in button is pressed. The editor will tell you if this is not the case. Merging does not have the
same restriction.

Merge

To start the merge activity, from the SpectrtumSCM Main Screen use the Extract/ Check out to
desktop menu item and select both files to be merged and check them out with the Merge option.
Open one on each side of the Merge Editor. This allows use of the SpectrumSCM Merge Editor to
see and reconcile the differences between the two files and complete the merging. In this example,
Genesis generic genl.2 is created to develop a new feature. It is based on Gen 1.0.

Pl SpectrumSCM - Add Generic [|[51)X)

File Action Help

Project: Genesis

Genearic Mame:; |gen 12

Deszcription:

Branch for new feature development

Base:
By Genetric By Release

C] &

Genl.0 ™

|5dd GEneric' | Cancel |

11-6

Chapter 11 Branching, Merging and Re-common

The developer has made a change to BinDb.java in generic Gen 1.2:

44 BinDb.java M=)
File Acton Edit Search Wersion Syntax Hishlishtine Help
XollGCcanald XhHiheae AD ¢ 8
File: BinDrb jawa Wetsion: 2.1 Generic): Gen 1.2 CR: SCRI000005
=
package scm.dbaccess;
A
A4 0Dl
A
import com.odi.Datsbase;
import java.io.*;
import scm.persistent.*;
import sem.utilities.*; |
w
< | > |
Lite: 8334 READ-ONLY --Active--

The same developer has changed the same file in generic Gen 1.0. He would like to merge the
changes between the two generics. To do so, he selects the file BinDb.java from the later generic
(1.2) and checks it out to the desktop to merge options using Extract / Checkout to desktop /
Merge menu options. A confirmation screen is shown. Click Merge to continue.

f4 SpectrumSCM - Merge File E]@
File Acton Help
Project: 5CM
File MNarne: BinDb java

iZeneric MName: ‘Sen 1.2

Soutce Creneric: |Cgen 1.0 w
'3::3' Use 2-WWay editor '3:::3' Use 3-Way editor

Cancel

11-7

Chapter 11 Branching, Merging and Re-common

The choice of merge editors will default to the merge editor type selected by the user in the user’s
preferences options. Once the editor has been started both versions of the file are displayed in the
Merge Editor.

izl SpectrumSCM 3Way-Merge =JoEs
Eile Action Edit Search Syntax Highlichting Help
£
XS casd ¥XDbhihaed® AD BD

BinDb java: [1.1] Genedc: [(Gen '1.- BinDbjava: [2.1] Genesie: [Gen BinDb java: [1.0] {Cormtmon ances

B ~ 4]
prackage scn.dbaccess; =] package scm.dbaccess: = | package scm.dbaccess;
i i i
F4 0Dl A4 0Dl A4 0DI
£ £ £
import cow.odi.®: J J Iimpm:t con. odi.Dacahaze: J Jj import com.odi.®:
import java.io.®; | import java.io.®: | import java.io.®:
import java.util.¥ector:; j-—“’f import scm.persistent.®: import scm.persistent.®:
import scm.persistent.®; import scm.utilities.™®; | import scm.utilities.*:
import scm.utilities.*;

i i
£ ## Class BinDh 44 Class BinDh
£# Class BinDb i o
£
public clazs BinDh |public clazz BinDh

public claszss Binkhhb — { { I

| | 1
| 1) Bt 3 private String _iv private String Bl
gl _m | 2] &] o > [| 2
|Line: 8/335 | Read-Only | Inactive |Line: 8/334 | Watable | Inactive |Line: 1/334 | Read-Oaly | Inactive

In the three way diff/merge tool (displayed) all diffs are done left to right relative to the common
ancestor file on the far right hand side. That is, the branched file on the far left is compared relative
to the second branch file in middle pane and then finally the second branch file is compared to the
common ancestor on the far right. The user can choose to swap the position of the two branch
files so that the comparison can be done against the first branch file and the common ancestor.

In the 2-way diff/merge tool, the user can run the diff analysis in either direction, which will have
an affect on how the actual difference is displayed to the user. For example an insert in one file will
be a delete in the other or vice-versa, depending on which “direction” the user chooses to run the
diff.

The Merge Editor(s) highlight the differences between two versions of a file and the common
ancestor (3-way). Inserts show up in green, changes in yellow and deletes in red.

In this case the first branch file has added a single line relative to the second branch file and the
second branch file has a single line difference (conflict) with the first branch file. The insert from
the first file to the second is highlighted with a green bar and the conflict between the two editors is
highlighted with a yellow change bar. Note that the change line in the second branch file is actually
color coded cyan. This is an indication that this change is an actual conflict between the changes
relative to the common ancestor and must be resolved by the user manually.

11-8

Chapter 11 Branching, Merging and Re-common

i SpectrumSCM 3Way-Merge

S[=17%)

File Action Edit ZSearch Syntax Highhshting

Help

XEICE ORE XDhae QD B

BinDb java: [1.1] Generic: [Gen 'l.:

BinDtb java: [2.1] Generic: [Gen

- -
package scm. dbaccess;: =: package scm.dbaccess: :I_é |
£ i
/4 00T /4 oo1|
i i
. 5 |
import com.odi. j J import com.odi.Database; i_I J
import java.io.™; [e :
3 z : | T — i e ot
import java.util.Vector: import Jjava.util.Vector: }f |
import scm.persistent.®; | import scu.persistent.®:
import scm.utilities.*; import scm.utilitcies.*:
£ i
/4 Class EinDhb 44 Class BinDh
£ £
public class BinDh { public clasz BinDh {
| £V
.{ : | 1 l{ 3 . | |
g _m | 62s] | [l | A
|Line: 8/335 |Read-Only | Inactive | Line: 5/335 [weritable | Active

BinDtb java: [1.0] {Common ances

||
et

| package zcm.dbaccesa; L=

|

.’U oDl
i
import com.odi.®*;

inport java.io. i
som.persistent. ¥;
scm.utilities.*;

| import

import
| import

| 2/
A4 Class BinDhb
[s

| public class EinDh
i f 1
private String ()
1

EAD 2

"_T_j..t-lei 1;’3;3-4] F;ad-Orﬂ I;acﬁ-ve
| | y |

In this case the developer has resolved the change by selecting the change bar in the first branch file
and applying that change to the second branch file with a mouse click. He then selects Check-in
button and since only the file from gen 1.2 was changed, only one file was checked in.

0K

Merge check-in succeeded. File versions 1.2 created.

Generic 1.0 still has its version 1.1 file unchanged.

119

Chapter 11 Branching, Merging and Re-common

Recommon
Recommoning brings two versions of the same file (in two different generics) back into one version
shared between the two generics (makes them common again). This is useful when a parallel
development effort on a project is brought back together to create one code path.

Recommon requires that the later generic has been set up with a previous generic as a basis and that
commonality to the previous generic is allowed. In this example, Genesis generic genl.2 is created
to develop a new feature. It is based on Gen 1.0.

B SpectrumSCH - Add Generic [|[B3)[X]

File Action Help

Project: Genesis

GEnerc Mame; |gen 1.2

Diescription:

Branch for new feature development

Basze:
By Generic. By Release

w0 D!
Fento w

|ﬁdd Generic| | Cancel

Recommoning is the act of bringing the divergent files back together into the same physical disk
image. For example, recommoning could occur when part of the development team is charged with
developing advanced features for the editor in parallel with the current work. The new work could
be done in a separate generic on un-commoned files. Once the work has been completed and
tested, the new features for the editor can be rolled into (recommoned with) the main development
code stream.

Continuing from the previous merge example, the user has chosen to re-common the file
BinDb.java in generic Genl.2 with the same file in Gen1.0.

11-10

Chapter 11 Branching, Merging and Re-common

{7l SpectrumSCM - scm - Connected to localhost:1099

File

Edit Extract Check-In ‘Wotkspace

ChanzeHRequest Adrministration Heports

X 2

a88ed oDt @8 &

Projects:| 5Ch | Genlerics:|Gen 1.2 | Loca Foot Directl:lr'f,:':CZHCDIETH’EEMPH'LSIC
% sCM
e Assiened CRs CE Filters...|: &l
= Gen 1.2 <- (Gen 1.0 <Fisst Release @g)n
ﬁl SCHI000005 - CR2
=47 seim
505 dbaccess (@ sCMO00003 - asdf
----- Binarpylratabasehd anaze i
_ _r}:,?. - %" | Edit Status | Content Search | Meta Search| Meta Info | CF
""" 0 R e ——— b — —
..... al:
% Co Check-Chit to Dresktop k HKead Cnly
..... Da
ﬁ Compate to Local Root... E Unecormmon Cirl+0
..... [y ot
_____ Eb e ﬁ Compate to Genesc... E
| “ =
I@I % Merge Branch File... o
@ Hecomtnomn...
) Cpen with...
Check-Cut this £
@ Hename..

11-11

Chapter 11 Branching, Merging and Re-common

To start this activity, from the SpectrumSCM main screen use the context sensitive menu on the
tree view and select Check-Out to Desktop->Recommon.... SpectrumSCM displays the source
generic (gen 1.2) and the base generic (Gen 1.0). When the re-common action has been completed,
the file from these two generics will be recommoned.

{7t SpectrumSCM - Merge File E]@
File Acton Help
Project: 5CM
File INatne: Binlrh java

Genetic Mame: Gen 1.2

Soutce Cenlerio: | Gen 1.0 w

':::»:3' 1Tse 2- Vi ay editod '3::3' Use 3-Way editor

[Re c I:I_ﬂ'.l.tnl:lﬂl [Qanl: el]

In this case the user has chosen to use the 2-way diff/metge tool to perform the re-commoning
operation. The BinDb.java file from Gen 1.0 and Gen 1.2 are brought up in the Merge Editor.

The Merge Editor highlights the differences between two versions of a file.

11-12

Chapter 11 Branching, Merging and Re-common

Use the EE buttons to base the difference from either right to left or left to right. Inserts
show up in green, changes in yellow and deletes in red. Depending on which direction you base the
differences, an insert (green) one way will be a delete (red) in the other.

In this case, a single line was added to the file in Genl.0 (green color bar) and a single line was
changed in the file on Gen 1.2 (yellow color bar).

L4 SpectrumSCM RECOMMON Editor M=l
File Action Edit Sesarch Wersion Syntax Highlishtine Help

XSO eaoald ¥XDhiae AP FTI1IBBD

File: Binlth java Wersion: 2.1 Generie(s): Gen 1.2 C || File: Binlb jawa Wersion: 1.1 Generne(s): Gen 1.0 58

| [| | ||
package scwm.dbaccess; || package scw.dbaccess;

£ L

A4 ont A4 oD

F A

import com.odi,.Database; import com.odi.*;

import jewa.io.*; import Jeva.do.*;

iwport java.util.Vector;

import scm.persistent.*; import sScmw.persistent.*;

import scm.utilities.?*; import scm.utilities.*;

£ £

£{ tlass BinDh = /f Class BinDh -
< I > < | >
Line: 17335 LIVE-ELIT Inactiwe |Lite; 1,335 LIVE-EDIT Inactive

Use the mouse to select each change and then apply the change in the direction that the diff was

executed. Use the b buttons to continue to check for differences in both directions. Then
use the Check-in function to recommon them into both releases. When doing a recommon, the
contents of both files in the editor must match at the time that check-in is selected. The editor will
tell you if this is not the case and check-in recommon will be blocked until the files are identical.
When the files are identical, both will be checked into their respective generics.

.

"Click Ok

\E) Check-in recommon succeeded, fie BhDb java now common with generics Gen 1,2 and Gen 1.0

11-13

Chapter 11 Branching, Merging and Re-common

Merging and Recommoning binary files

Since the SpectrtumSCM dual editor can only be used with text files, the merge/recommon
operations for binary files proceed differently.

With a merge operation you will be presented with the following popup —

L -

Continue ?

This is a binary File, if wou continue ALL of your changes from source
generic "genz. 1" will be automatically merged INTO this generic's file,

The Preview buttan will show wau the saurce File of this operatian.
Conkinue ?

[Cnntinue] [Preview] [Cancel]

The source generic will be the one you selected at the start of the merge operation. Selecting the
Preview button will open your custom editor on the version of the file under the source generic. See
Chapter-5 for details on how to define custom editors. This will be the version that will be merged into the
current file in the generic where you are performing the edit.

The Continue button will proceed and automatically perform the merge, overlaying the current
version of the file with the contents from the other generic. Since all the changes are versioned, you
can still step backwards through the version history if necessary.

With a recommon operation, the popup is slightly different —

= |

Continue ?

This is a binary File, if wou continue ALL of your changes From source
generic "genz. 1" will be automatically recommoned INTO this generic's file.

The switch buttan will switch the source and target generics,
The Preview bukton will show wou the source File of this operation,
Conkinue ¥

[Cl:untinue] [Switch] [F‘review] [Cancel]

Specifically, because the edit is occurring on both generics, there is a “Switch” button which allows
you to choose which file should be the source of the recommon operation. Use the Preview button
as before to see the version of the file that will become the head revision.

Once the Continue button is pressed, the recommon operation will complete automatically.

11.4 Using Branching Patterns for Configuration Management*
*Based on Advanced Branching Techniques for SpectrumS CM, a White Paper written by William C. Brown,
05/14/2002

The technical execution of creating a generic, creating, merging and recommoning files is simple
compared to the task of determining how best to create branches to support the specific needs of
the system development effort. Over the years, developers and system engineers have developed
many unique branching techniques to solve difficult configuration management problems. The

11-14

Chapter 11 Branching, Merging and Re-common

purpose of this section is to describe several of the most common branching techniques and to
illustrate how these techniques can be implemented using the SpectrumSCM system. SpectrumSCM
approaches branching in a significantly different and more powerful manner than most CM systems.
The SpectrumSCM system introduces the concept of Product Ievel Branching that is unique to the CM
industry. Product level branching ensures that branches are well known (documented), controllable
and use repository space as efficiently as possible.
Like design patterns used in programming techniques, the application of proper design patterns to
configuration management will result in the development and evolution of systems that are more
maintainable, understandable, extensible and scalable. The use of a CM system should not become a
burden by adding to the workload of the development team. A propetly used CM system should
free the developer from the intricate details of branching and release management. The proper
application of branching design patterns can result in systems that are as easy to use and maintain
after years of activity.
SpectrumSCM does not impose any one branching design pattern on the users of the system. Users
of SpectrumSCM are free to use many different branching design patterns, including all of the
patterns outlined in this paper. Most developers are familiar with the most common branching
technique, which involves branching single files during code development. For a short period of
time, the code is extended in a branch to resolve a particular problem or to introduce a new feature
outside the mainline development effort. The branched code is eventually merged back into the
mainline after the fix has been verified or the new feature set has been implemented. While this is a
common technique, and one that is supported by SpectrumSCM, it’s not the best solution for every
situation.
The following design patterns are supported by SpectrumSCM and, in some instances, are unique to
SpectrumSCM.

* The Classic branching design pattern

= Parallel Development pattern

= The Sandbox pattern

* The Promotion (Repository) Pattern
= The Patch Pattern

11-15

Chapter 11 Branching, Merging and Re-common

The Classic Branching Design Pattern

The classic pattern is the basic branching pattern outlined above. This pattern is the most
recognized and most often used pattern for branching code. The classic pattern allows individual
developers to individually create alternate branches of code extended from the mainline
development stream. Without a strong CM system such as SpectrumSCM, the existence of such a
branch is not immediately obvious to the other users of the system.

Traditionally, this type of branching is done at the file level and the branched files are only
conceptually linked to a specific branch by a branch number embedded in the version number of
the file, for example in systems based on RCS (Revision Control System) where the third digit in the
file version number is greater than “0” (file version 1.3.1.2 might mean that a branch for this
particular file was formed at version 1.3 and is now at version 1.2 of the new branch). Creating a
release with the proper file versions can be difficult at best.

In the SpectrumSCM system, branches are first class objects in the system and their existence is
readily apparent to the users of the system. To perform classic branching in the SpectrumSCM
system, a generic is created to contain the branched files. Notes and other artifacts can be
associated with the branch to assure that the purpose of the branch is known and available to every
user of the system. When a generic is created from another generic or release, all files shared
between the original code stream and the new generic are common to the two streams. This means
that only one first class object for each file physically exists in the system and both branches point
to that object. Actual branching is accomplished by uncommoning a file from the mainline into
the branch. When a file is uncommoned, there are two first class system objects, one for each
version of the file. The following diagram illustrates the point:

Branch

generic ‘
OO0 g

N

Mainline
generic

In this example, the dark circles represent a single uncommoned file. Each branch contains a
separate physical instance of this file and shared instances of all the other files. When the files are
recommoned, both branches will again share a single file instance.

The objective of the classic branching pattern is to diverge one or more files from the mainline,
usually for a short period of time, so that custom work or bug fixes can be applied outside the
mainstream development effort. At a later date, the changes are merged or recommoned back into
the mainline development stream.

In the SpectrumSCM system there is a significant difference between merging and recommoning.
Recommoning makes one single source instance out of two independent entities. Merging
combines the contents of the two files, but the two files remain physically separate.

11-16

Chapter 11 Branching, Merging and Re-common

The Classic branching pattern is used to diverge small numbers of files from the mainline code
stream, for a short period of time, in order to fix a known problem or to implement a new feature.
The diverged files are merged back into the mainline code stream when the work has been
completed.

Parallel Development Pattern

The parallel development pattern is very similar to the classic pattern in that two or more branches
are created, but in the parallel pattern, some files are never merged or recommoned back with the
mainline. The parallel development pattern might be used during the development of a product for
use on multiple operating systems. The vast majority of the functionality and source files are the
same on all operating system, but some files must be unique to support the differences between the
operating systems. For example, the direct video calls for any GUI components will most certainly
be different and will thus require different code. The implementation of the second or third generic
(branch) is exactly the same as in the classic pattern except that some files will never be
recommoned. Each generic will become a platform-specific release of the product. The following
diagram illustrates parallel development for an editor that will run on three different operating
systems:

glg?e - ‘

Unix
generic

Windows
generic

In this case, the files Gui.c and Gui.h are different for each operating system and must remain
diverged. The MAC, Unix and Windows generics all share the vast majority of files and only the
files necessarily different to implement the GUI on each OS are diverged.

This is where one of the strengths of the SpectrumSCM system becomes very apparent. There are
three separate streams of work, one for each of the three supported operating systems. But the vast
majority of the files that make up the product are common. As a result, when problems are fixed in
these common files, all three generics get the fix at the same time. The CR (Change Request) that is
used to resolve the issue is available to be included in a release on all three generics. This feature, which
is unique to SpectrumSCM, relieves the developer from fixing the same bug three times in three separate branches of
the code.

1117

Chapter 11 Branching, Merging and Re-common

The Sandbox Pattern

In the Sandbox pattern, all work is performed in separate generics before being integrated back into
the mainline. The most attractive feature of this pattern is that the mainline branch and the
development branch are always in a known good state. New features are first developed in separate
sandboxes and then integrated into the mainline only after the new features have been thoroughly
tested and approved by the testing organization. When the features are recommoned into the
mainline, the developers can extract the code from the mainline and build a system with a known
set of working and tested features. This pattern assures that the mainline is never in a quasi-
buildable state, which happens quite often in traditional development. The development branch,
because there is one branch per developer, always matches what the developer has in her private
work area on her machine. The developer is free to work independently on a separate branch
without impacting other developers. Consider the following diagram:

ggl;]Sd box O ‘ ‘ O

\

Q@ O
Q@ O

Gary’s (
Sandbox

| S Y EU N —

()

Mainline L

O Shared Common File O Physical file ‘ Physical Uncommoned file

In this diagram the transparent circles are the shared common files that are common to the
mainline. The blue circles are the actual physical instances of the files that the shared common files
point to. The green circles are unshared physical files that have been uncommoned into Bill and
Gary’s sandboxes. When these developers are finished with their parallel development work, the
files will be recommoned with the mainline. After recommoning, the circles will become transparent
like the others.

()
/

The sandbox pattern enables long-term parallel development. Most CM systems offer some form of
parallel development in the form of concurrent editing. The problem with traditional concurrent
editing is that it is file-based; as soon as a programmer checks in a concurrently edited file, it must
be merged back to the mainline code stream. Sandboxes allow long-term parallel development by
allowing the programmer to freely check in and out any amount of code, for any amount of time,
without disrupting work that may be in progress on the mainline. Only after the entire new feature
has been tested and verified will the new code for the feature be merged back to the mainline
branch.

The only caveat to this pattern is that it is an “all or nothing” pattern. All developers on the project
team must use this pattern or they cannot use it at all. If files are uncommoned into the mainline

11-18

Chapter 11 Branching, Merging and Re-common

and also into individual sandboxes, it becomes difficult to recommon the files back into all of the
parallel generics. Consistent use of the sandbox pattern guarantees that the recommoning effort will
be trivial, involving only a single merge of each file. The sandbox pattern closely resembles the
parallel development pattern, except that all files will be recommoned into a single generic when
development work is complete.

SpectrumSCM may be the only CM system that properly supports this pattern.

The Sandbox pattern provides each developer with a separate environment in which to work on
new features or bug fixes. This pattern provides for long-term parallel development that is
completely isolated from the mainline.

The Promotion (Repository) Pattern

The Promotion (Repository) Pattern is similar to the sandbox pattern, but it operates in reverse.
Using the promotion pattern, all work is done in the mainline and only after a feature has been
thoroughly tested and approved is the feature promoted to another branch. The promotion branch
or repository branch is where all feature sets are included to create system releases. The mainline
becomes the development sandbox for all developers on the team. The objective of the promotion
pattern is to produce a code repository for all known good work. System releases are generated only
from the repository branch. At any time a good system can be extracted and built from the contents
of the repository branch.

This pattern depends on classic concurrent editing and at any time the mainline may be in a severe
state of flux. Fortunately, developers don’t often check unfinished code back into the mainline until
it is done; thus the mainline should remain relatively clean, but that is a process issue. The following
diagram illustrates the point:

Repository C)) ()
Branch - Y = 5
e — OO O OO

~— — T N — —

SpectrumSCM easily supports this pattern. After the repository branch is created, all files are
checked out uncommon from the mainline. SpectrumSCM allows the project leaders to enforce this
behavior by locking the repository generic. Locking guarantees that all files checked out or into the
mainline will be uncommoned from the repository branch. Later, when the new features have been
developed and tested, the new code is merged into the repository branch using the SpectrumSCM
Merge Editor or by simply adding the new files to the repository generic. When features are rolled
into the repository generic, the work is done by creating a new CR (Change Request) and that CR is
used for adding or merging the files into the repository generic. Each CR in the repository generic
represents a complete system feature or problem resolution. These CRs are easily included in new
releases created from the repository branch. It is extremely easy to determine which feature sets and
which bug fixes have been included in a release from the list of CRs associated with that release.

All work done by the development team occurs in the mainline branch. Only after features and bug
fixes have been thoroughly tested and approved are they merged into the repository branch for
creation of releases.

11-19

Chapter 11 Branching, Merging and Re-common

The Patch Pattern

The patch pattern is used to repair and re-release previously shipped releases. Typically this pattern
is exercised when a customer calls to report a bug, in a particular release of the system. By using the
patch pattern, the particular release that the customer is having problems with can be extracted and
placed into a new working branch. The branch must be immediately locked so that common files
are uncommoned during edit operations. The new branch allows developers to work on the exact
file versions that were used to initially create the release. This allows the developers to faithfully
reproduce the system as it was released to the customer and to debug and fix the problem. The
problem files are extended directly from the released version numbers to add the fix. Once the
fix(es) have been added to the patch branch, a new release can be generated, tested and released
back to the customer and made available to other customers using that release. Consider the
following diagram:

Patch Branch

N

Mainline ‘ ‘ ‘ ‘

V3.0 . ‘

Mainline V2.0 CD_ (D _ (D () (.
Release 2 N4 N4 N4 N _ N4

v vio— (€)) () P4
Relmgé1 _/ _/ _/ _/ _/ _/

In this example, release 1.0 has been extracted into a new generic called the patch branch. The
generic is locked and all of the files that are edited to resolve the problem are either already
uncommoned or will become uncommoned as part of the edit operation.

The creation of the patch branch pattern allows developers to use the merge and recommon editors
to apply bug fixes from subsequent releases into the newly created patch release. SpectrumSCM easil)
supports this pattern and, again, may be one a few CM systems that supports this pattern correctly. Any system can
be used to dump out a previous release (one hopes) but very few systems actually allow the creation
of a branch from a previously released system.

Sometimes previously released systems must be patched due to unexpected problems. End users of
the previously released system may be reluctant to upgrade to the latest release due to testing issues
and possible downtime. SpectrumSCM allows for any release to be recreated, and patch branches
off that release to be easily created. Creating a new generic that is rooted in a previous release of the
system does this. Files in the new branch are visible exactly as they were when the release was
created. The calendar is essentially turned back to that time frame and the revision numbers for files
in the patch generic are based on the revision numbers of the released product.

The patch pattern allows for a previously released version of a system to be easily extended and re-
released without impact on other releases or current work. This pattern is not often needed, but

11-20

Chapter 11 Branching, Merging and Re-common

when it is, the ability to actually create a branch from a previous release results in a collective sigh of
relief from the product developers and development managers.

Conclusion

Several different branching techniques have been outlined above. The application of these patterns
can result in systems that are easy to maintain, manage and extend. The application of the wrong
pattern at the wrong time, or simply not applying any patterns to everyday development work, can
lead to the development and evolution of systems that are confusing at best and extremely hard to
manage at worst. Some shops avoid concurrent editing or any form of branching simply because
their CM tools do not make branching and merging an easy process. Branching, merging and
concurrent editing should not be difficult subjects that are only spoken about in soft whispers
around the water cooler. If an organization’s CM tools do not easily support these features, then it’s
probably time to think about some new tools. SpectrumSCM supports all of these patterns easily.
Branching, merging, concurrent editing, and recommoning are all features of the Spectrum tool that
are very easy to use and make difficult CM situations easier to manage.

11.5 CR Integrator

The CR Integrator is an interactive screen that can be used to compare, merge and recommon 2
generics or branches. The integrator is designed to help and automate (where possible) the process
of merging or recommoning changes from one generic to another. This action frequently occurs as
part of a number of branching patterns (e.g. the sandbox pattern). Under the sandbox pattern a
developer (or team) perform their work in a sandbox generic, isolated from the main production
line. Then when that work is complete they merge the work into the mainline ready for the next
production release.

Some work-items can be automatically completed (seen in green in the screen-shot below) leading
to huge productivity gains. For other items that require some scrutiny (seen in), the user will
be walked through the necessary steps. This in turn, not only gives you some productivity gains but
also ensures the stability of your product.

11-21

Chapter 11 Branching, Merging and Re-common

(i R e e ok
P foni Hep
o 5 £ B Genew st prpos
Chingis Bexjosits
| Calset CEs | Seurcy Gamoe Edb:IF S 'i'! I|E| Tagst Senwne rﬂl.l;ﬂ '-!
I Rtan | Sad 1'!
—————— et
CR & | E-u:_lu: | Hazdse
wmbgEn e = ingn] woasess —
o 0 ladumi_pmdbor =2 maelee tach CF
wotrs (0 060 A [rrarisie IR lmiegpator o1
st (M R ER |Coevm Gundion | dewebopinieit R
o010 wmasiny Masinie deehpntens CB
Fika

[CoertEare| 263 ks fiovn SCHS

Fir S Foeos TR | Lk Tages R St Remumaniared o Aftn |
doca) Spacknen ST Adva | =ermil (K] (K1 E Haw n rman: manks d rtic affng @Ena NHI
doca) Spectnen SO Pamic | =ermil (K] (1 & Haw n ppmen: manis | BT i
drca') Sprctnen SO Taamm | izermil K] (W1 € Hww in grman: manis e
poe-3 21 o ahar £ weern 001 (83 | Haw i groaos Sy Swosdban | [
poe-d 21 \pech atoke < wern D0 (6 | Hww i prmaos Crongy Susdban 74 2
poe-d 21 et bbeorapdee £ e D0 (K 0 =ermil K] 1§ Carem Smub e 1) onkychang © Sute mane
pee-3 231 e’ bibmap = s 00 8] [Eemil KD rrmndm 2 15 andy :I:.Ig‘ld mes |
pee-3 21 e budba ¢ e D01 (6] [Eemil 0D Bath chageed (1.1, 57 amza 1.0 | t
poe-d 21 \peche awenine | izermil K] (Rl E Hww in grman: manis Falakc v Blicormmonc aiis ot gwocns
poe-d 21 \peche- comrmnie . e D0 6] 04 izermil K] (W1 E Sait-dekbid npenen: mankos ﬂ'!hll Emrl;.lmu-rl_ml:,ri:nd.b:l
e 21 \peche-apmme | ::nﬂmmﬁ I‘-Iixngmnrrn:.nhu Falken Bl i
poe-d 21 \peche Bannatc | ::n'll][l][l]ﬁ: Hww in prman: manis I !-\.-\.I_ﬂ.
pec-3 21 e b | ::rrﬂl:l][l]E Huw in prman: manis L] !.-\.-\.I_H. |
pec-3 21 Yot dee ::rrﬂlIIIIIB_ -Hixugrmnrrn:.nhl [l sk v EL i

H Mt{lll“ H.i-nau-m”“ Elnll

11.5.1 Screen Flow

Select Generics - The first thing you want to do, is select your Source Generic and then your
Target Generic. Only generics that are related and can therefore be merged will be presented. The
target generic is where the merge operation work is going to be performed.

For example: if you are merging your work from your sandbox back into the mainline, then the
source generic will be your sandbox and the target will be the mainline.

Note: The button can be used to swap the source and target generics.

Collect CRs - Once the source and target generics have been selected, the Collect CRs button should
be pressed. This performs the generic audit to identify which CRs have caused files to be different
between the 2 generics.

A double click on a CR entry will trigger the Change Request Report. This is also available off of
the toolbar and Action menu.

11-22

Chapter 11 Branching, Merging and Re-common

Collect Files - Once the CRs list is populated, you can filter them if desired OR you can just
present the file differences by pressing the Collect Files button. The file differences show which files
that were edited by the selected CRs, are currently different between the source and target generics.

The Collected Files table presents the following information -

e The file.
e The last source CR - which CR was last used to edit this file in the source generic.
e The last target CR - which CR was last used to edit this file in the target generic.
e State - A summary line as to the state of the difference between the 2 generics for this file.
e Action - A recommendation as to which actions would generally make sense under this
state.
At this point you can review the differences, or you can work the differences either individually or

in bulk.

File lines shown in green are able to be automatically resolved.

File lines in need manual assistance.

Soutce CR Report There are also a number of options available on the
= richt-mouse button, these operations are performed
]'E"E Teger CF Fepest re%ative to the selected lines.pDouble—clicin)ng on a file
soutce File Historg Summary Repost line will run the File History Generic Comparison
@ Tatget Fils History Summary Repost report, which shows how the file versions have

o _ _ progressed in the source and target generics, version
@ select File in main repository tree by Version.
ﬁ Compate Source & Tarpet

CD Auto herze Source == Target
@ Auto Recotrimon Soutce &Ta:get

ﬁ} bamual hlerge Source == Target
@ hfanual FEecommon Soutce &Target

[ralete Fiefsy
LELE A}

11.5.2 Running an Auto-Merge

Select the CR for this operation - 1f you perform an edit operation, it needs to be performed
relative to a change request that is assigned 7o you. If this is a merge operation the CR needs to be
assigned under the target generic. If this is a recommon operation, since both generics are affected,
the CR can come from either the source or the target generic.

The Operation CR choice box allows you to select this CR. Target generic CRs are shown in black
and can therefore be used for either merge or recommon operations. Source generic CRs are shown
in blue and can therefore only be used for recommoning. When a specific CR is chosen, then that
will be used for all the operations until it is changed.

NOTE - Because merge operations have to be completed against a CR in the target generic, only
black CRs will enable the merge button.

11-23

Chapter 11 Branching, Merging and Re-common

There are also a couple of special values Last Target CR and Last Source CR.

If the "Last Target CR" option is chosen, the merge or recommon operation will be attempted
against the CR shown in the Last Target CR column for each file. This is useful if you are merging
the work of multiple CRs and you want the merge operation to be recorded against each of those
CRs respectively.

Similarly, the "Last Source CR" will attempt to perform the requested operation against the CR
shown in the Last Source CR column.

If there is no "Last ... CR", or it is no izl Please Select a Change Request

longer assigned to you, you will be 2) The last odit CR om000004) fo il

presented with a warning and requested to stclsem'\images'\ Caution. gif
SCICCt a Vahd CR is tiot assigried to you under the target generic "rnainline".

Please select an appropriate CR for this operation -
. ® schUUUU2 - Bulld e feature
sem1000003 - Fix error messaze typo

If no file lines are selected and either of the merge or recommon buttons at the bottom of the
screen are pressed then ALL lines will attempt to be processed. If one or more lines are selected
then only those lines will be processed. You can select on a column header of the file table to sort
by those values. So, for example, if you want to sort the actions into automatable and manual tasks
you can do so.

Manual Merge and Manual Recommon operations are the same as if they were executed from the
main screen file tree/menu structure.

Auto-Merge will update the target generic with the source file version contents but leave the files as
separate instances. Auto-recommon literally makes the two generics point to the same file (with the
source file contents). Recommoning enables future common edits.

If an automatic operation is selected upon a number of file lines, only those lines that are auto-
capable will be automatically completed. The dialog will walk you through performing the manual
tasks as appropriate.

When file lines are processed the Recommended Action box is set as such. If you want to
reprocess a particular line, simply select it and select the required operation. A popup dialog will
confirm the reprocessing action.

11-24

Chapter 11 Branching, Merging and Re-common

11.6 Generic/Branching Reports

Thete are 2 specific reports useful for managing multiple genetic/branch situations. The “Genetic Audit
Report” compares the 2 selected generics and reports on the differences (uncommon or new files). The
“File History Generic Comparison Report” reports on a particular files history with respect to its
branching, commonality or uncommon situations.

The example below shows how the file was introduced common under CR 10. The file was then edited
common under CR 11 before being edited uncommon into the “Branch” generic by CR 12. Work under
CR 12 continued in the “Branch’ until it was recommoned back into the mainline with version 2.2.

File History Generic Comparison Report

Project : scm

Source Generic : Branch
Compare Generic : Mainline
Filename : alias.c
Filepath : gee-3.2.1\gee

File type is: TEXT

Version History

Branch Mainline
Version Edit CR Edit Date Common Version Edit CR Edit Date
Number Number
2.2 scm000012 2008/01/08 Common 2.2 scm000012 2008/01/08
16:18:41 16:18:41
2.1 scm000012 2008/01/08
16:18:05
2.0 scm000012 2008/01/08
16:17:54
1.1 scm000011 2008/01/08 Common 1.1 scm000011 2008/01/08
16:17:48 16:17:48
1.0 scm000010 2008/01/04 Common 1.0 scm000010 2008/01/04
12:01:19 12:01:19

11-25

